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We consider a spin system on a lattice with finite-range, possibly unbounded 
random interactions. We show that for such systems the Glauber dynamics can- 
not decay to equilibrium exponentially fast in L2 even at high temperatures. 
Additionally, for one-dimensional systems with unbounded random couplings 
we prove that with probability one the corresponding Glauber dynamics has a 
fast (subexponential) decay to equilibrium in the uniform norm, provided that 
the distribution of random couplings satisfies some exponential bound. 

KEY WORDS: Stochastic dynamics; random spin systems; logarithmic 
Sobolev inequality with local coefficients; strong decay to equilibrium. 

1. INTRODUCTION 

The equilibrium description of lattice spin systems with r andom interac- 
tions at high temperatures  is relatively well studied (see refs. l, 4, 3, 7, and 
l l, and references given there). In the present paper  we make a first 
a t tempt  to make  progress in the study of the corresponding stochastic 
dynamics. 

We consider a spin system on a lattice Z d defined by the following 
interaction energy: 

U A =~ --  ~ Jii, tYio'i, (1.1)  
nn 

with nn indicating the summat ion  running over the nearest-neighbor pairs 
intersecting a fi.nite set A c Z d and with spins a i, a r taking values from a 
finite set M c I~. The couplings J=.r 6 ~ are i.i.d, r andom variables with a 
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distribution E, satisfying E ]Ji, ~, I < ~ ,  where we have used a part icular  case 
of the notat ion E F =  ~ F d E  for an expectation of a function F with the 
probabil i ty measure E. By J we denote a configuration of r andom 
couplings, i.e., J = {Ji, i'} i,i'~za- If  the dimension d =  1, we will assume that 
the r andom couplings are unbounded;  otherwise the result of ref. 12 
applies. 

Let /1 o be a free measure on s  M za, defined as the product  of 
uniform measures on M and, for A e 7/a, let Po" denote its restriction to the 
sigma algebra generated by the spins aj ,  i ~A .  The expectation of a 
function f with a probabil i ty measure p on /2 will be denoted by 
l z ( f )  ==-/.tf=~ f dp. Later we will need the following discrete gradient: 

V ~ f = p ~ f  - f  

and the following seminorm: 

I I I f l l l - ~  IIV,fllu 
i 

with I1" Ilu denoting the supremum norm. 
Let : -  denote the family of  all finite sets in Z a. For  every set A ~ : -  we 

define a finite-volume Gibbs measure p~ ,  with external conditions given by 
a configuration a ~ M za, as follows: 

{p ~ e - UAF\ 

where ~.  denotes the Dirac measure at a e t2. 
It is known ~4'3'7~ that  (with probabil i ty one) the described random 

spin system has a unique infinite-volume Gibbs measure PJ- Moreover  the 
measure/1 j has an exponential  decay of correlations in the sense that  there 
is a positive non random constant  M such that  for any two local functions 
F and G (i.e., functions dependent  only on a finite number  of  spins) we 
have 

[:t j(FG ) - / J j ( F )  pj (G)[  ~< C(J,  F, G)e -M dist(F. G) (1.3) 

with some positive r andom variable C(J,  F, G). 
In the present paper  we consider the corresponding stochastic 

dynamics defined by the generators 

t ~ X  X w A.a--.LPj.,~.~,=~,~ ~ LPx+ i (1.4) 
X + i c A  

with 

LPx + i f ( a )  -- LPx § j f ( a )  - P"x +i, a f  - f ( a )  (1.5) 
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for some Xr  ,~-. Let 

px ,  A, ~ = p x .  a, ,~. ~, =_ exp(ts x. o) (1.6) 

denote the corresponding semigroup. If A = Z a, we will omit the corre- 
sponding index. Then we will omit also the index tr, because as one can 
show, the corresponding dynamics is independent of it. Additionally, to 
simplify the notation, we will omit the index J whenever this will not lead 
to confusion. Thus we will use the following notation for the infinite- 
volume Glauber dynamics: 

p X = p,X. a = exp( ts ax) = exp( t.~ 'x)  

with the corresponding generator 

Z , ' '~-  y. zex+, 
i eZ  d 

Let us recall that the generator ~ x  can be extended in L2(fla ) to  a 
self-adjoint (unbounded) operator, which will be denoted later by the same 
symbol. 

We are interested in the ergodicity question for the Glauber dynamics 
pX, a. That is, we want to know what is the best estimate of the quantity 
[ P X ' a f - p s f [  when time t increases to infinity, which is true with 
E-probability one. 

In the situation of nonrandom spin systems, it is believed that in the 
uniqueness region the decay to equilibrium for every Glauber dynamics p X 
is essentially the same as the decay of correlations for the unique Gibbs 
measure. We will show that this cannot be true for all random spin systems 
for which (1.3) holds. Namely we will prove the following result. 

Theorem 1.1. Suppose that 

E{Jir 1> J} > 0 (1.7) 

for all JE(0 ,  ~ )  if d =  1, or when d >  1 for some sufficiently large J > 0 .  
Then with E-probability one, we have 

inf P s( _ s  f )  - 0  (1.8) 
f#o ps(f__flaf)2 

i.e., the self-adjoint operator -.~,~ in L2(pa)  has no spectral gap. 

The proof of this result (using similar arguments as those employed to 
get the Griffiths singularities) is given in Section 2. By a simple use of the 
spectral theorem, this result clearly implies that (when one allows suf- 
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ficiently large couplings) the decay to equilibrium cannot be exponentially 
fast and therefore it should be qualitatively different than the decay of 
correlations (1.3). 

To answer the question of what could be the decay to equilibrium, we 
study later in Sections 3 and 4 a simple one-dimensional model with 
unbounded couplings (otherwise the results of ref. 12 would apply). Using 
a version of multiscale analysis (which is already quite involved in one 
dimension), we show the following result. 

Theorem 1.2. Suppose that there are constants ere(O, 1) and 
Be(O, ~ )  such that for some ze(O, ~ )  we have 

E exp(z IJi, i+ i1 i/,t) .~< B (1.9) 

Then for any dynamics pa.. j we have the strong decay to equilibrium, i.e., 
the following estimate holds with E-probability one with arbitrary constant 
6e  (0, 1) for any local function f :  

lIP, x' a f -/~ afll ,, <, C,~( J, X, f ) e  -'~ (1.10) 

with some random variable C,~(J, X, f ) E  (0, ~) .  

In view of Theorem 1.1, the above result is the best possible. 
The basic ingredients of the proof of Theorem 1.2 are the following: 

�9 The finite speed of propagation of interaction, i.e., the following 
bound: For every A e (0, o~) we have 

IlP.,.f- PIJ ~ <~ e-A~ [[[f[[[ (*) 

for every local function f a n d  every s e  [0, t] with t satisfying 

dist(f, A") t> Ct (1.11) 

for some positive constant C dependent only on the choice of the 
constant A. 

This estimate easily follows by standard arguments (see, e.g., ref. 8), 
since by our definition the rates of the dynamics are uniformly bounded 
from above. 

�9 The logarithmic Sobolev &equality with local coefficients, i.e., the 
inequality 

p A f  2lOg f~< ~" c ~' o i/-tA [Vif[ 2 log(p,~ f2) I/2 +P,~f- . (LLS) 
i ~ A  
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with some c i - c j ( J ) ~ ( 0 ,  ov) satisfying (with E-probability one) the 
following sublinear growth condition: 

c i ~< C ( J ) [  1 -4- d(O, i)]" (**) 

with some y E (0, 1) and positive random variable C(J) for every function 
f>~0. 

The proof of (LLS) in our setting is given in Section 3. From the 
above two properties, the main result follows by use of the ideas of ref. 5 
(see also refs. 6, 8, and 9). For the reader's convenience we give the corre- 
sponding details in Section 4. 

One can hope that the ideas of the present paper will be of use in 
understanding also the intriguing problem of the decay to equilibrium for 
disordered spin systems on a higher-dimensional lattice. 

2. NO SPECTRAL GAP PROPERTY 

Let us consider a spin system on a lattice 7/a, d e  N, described by the 
interaction 

U A = - -  ~, J i r  o i o i  . (2.1) 
nn 

with summation running over the nearest neighbors and Jir being i.i.d. 
random variables with a distribution E. Let 

X'a =-L/'x= Y', s (2.2) 
i E Z  d 

be the generator of the Glauber dynamics defined in Section I. Then we 
have the following result. 

T h e o r e m  2 . 1 .  Suppose that 

E{J,r >~J} > 0 (2.3) 

for all JE(0 ,  m)  if d =  1, or when d > l  for some sufficiently large J > 0 .  
Then with E-probability one, we have 

inf/~ J( - Le] ' ( f ) f )  = 0 (2.4) 
.f~o ,ua(f-- f laf)  z 

i.e., the self-adjoint operator - ~ a  x in Lz(fla ) has no spectral gap. 
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Proof. First let us consider the single-spin-flip case, i.e., dynamics 
defined with X- -  0. Suppose, for a box A c •d and a positive number J, a 
configuration J satisfies 

V(ii') c A, Jii,~J and ViEA, i'~OA, [Jii,[ ~< 1 (2.5) 

For such a configuration J we have 

PJ(--~wa(f) f )  <~ Ce 6 IoAI /a~  (2.6) 
Pa( f - /aJ f )"  oA eA 2 /aa ( f - P a  f )  

where OA /aa , respectively L, a~ denotes an infinite-volume measure corre- 
J , 

sponding to the interaction (2.1) with J i l , -  0 if i e  A and i '~  7/a\A, respec- 
tively the corresponding generator of the Glauber dynamics; the constant 
C~ (0, ~ )  is independent of A, the configuration J satisfying (2.5), and a 
function f .  If  we now restrict ourselves to the functions f dependent only 
on spins in A, using the result of ref. 10, for d >/2, we get 

-.-~'a ( f ) f )  inf P'ta(--'-q'A'J(f)f) <.NC,(J)e-S~'IOAI inf /a~ oA 
f *O OA OA 2 /aa ( f  -Pa  f )  y , o  UA a(f --PA af) 2 

f ( a ) = f ( a A )  f (o )  = f (  a . , I  ) ' ' 

(2.7) 

with some constant C,(J) e (0, oo and a constant ~* > 0 independent of J. 
Combining (2.6) with (2.7) and choosing J e ( 0 ,  oo) sufficiently large, we 
see that, if A is sufficiently large, for every e > 0 we get 

i n f / a s ( - - ~ ' a ( f ) f )  < e (2.8) 
f ~ O  /as(f--/aaf) 2 

TO reach a similar conclusion for the one-dimensional case, we use first 
similar arguments as in (2.6) and extend the measure to an infinite-volume 
measure with purely ferromagnetic interaction of an amplitude J (outside 
A). Now we take into account the fact that if A is sufficiently large, we 
would not need to make an essential correction when estimating the 
infimum of interest to us by replacing it by an infimum over all admissible 
(nonlocalized) functions. Finally, we can estimate from above the spectral 
gap of the infinite system by the mass gap describing the exponential decay 
of correlations for the infinite-volume measure. Since the last is converging 
to zero when J converges to infinity, the former also have to converge to 
zero. 

To finish the proof, we need only to observe that by the Borel-Cantelli 
lemma for E-a.e. configuration J there is an arbitrarily large box A such 
that (2.5) is true. This ends the proof of Theorem 2.1 for the single-spin-flip 
Glauber dynamics. 
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Let us note that the proof of the general case in one dimension 
requires no changes, since the finite speed of propagation of interaction on 
which it is based remains true also for the other dynamics. 

To handle the higher-dimensional case, let us remark first that all the 
arguments go through if we replace the first requirement in (2.5) by 

J +  C >  Jir/> J (2.9) 

with a constant C e  [1, ~ ) .  In this situation we can bound the quadratic 
form of a generator l a x  restricted to the functions in a box A by the quad- 
ratic form of .V' s, the generator of the single-spin-flip dynamics, multiplied 
by a factor e "cJ+c) lxl, with some numerical constant a > 0 .  Certainly this 
factor can be beaten by the one from the right-hand side of (2.7) for all suf- 
ficiently large boxes A. Therefore also in the general case the conclusion of 
the theorem remains valid. I 

To understand better our result, let us remark that by use of the 
spectral theorem we have the equivalence 

m - g a p 2 ( - . L P ) > O c : , l l ( P , f - l ~ f ) 2 < ~ e - 2 m ' l t ( f - l ~ f )  2 Vfe L2(p) 

(2.10) 

where g a p 2 ( -  ~a) denotes the spectral gap of minus a self-adjoint generator 
of the Markov semigroup P , -  e '~r. Theorem 2.1 does not say that the 

estimate such as that on the right-hand side of (2.10) is not possible for a 
given function f .  (Of course, by abstract arguments, there are functions for 
which it is true, although one would not expect that for the local func- 
tions.) It does say only that in general to get a bound on the quantity 
i z ( P , f - l t f )  2 we need essentially to know the spectral measure of f 
associated to the self-adjoint operator .oqL This is a very interesting and 
challenging problem. A technique for solving it is slowly emerging. 

In the rest of the paper we show that in the case of one-dimensional 
systems, one can obtain more detailed information about the decay to 
equilibrium. 

3. PROOF OF (LLS) 

The proof of (LLS) will be obtained by some modification of the 
arguments from ref. 12. First of all let us note the following simple 
probabilistic lemma, which will play an important role later. 

L e m m a 3 ] l .  Suppose that there are constants c te(0 ,1)  and 
Be (0 ,  oo) such that for some ze (0 ,  oo) we have 

E exp(z [Ji, i +  1 [ l / a )  ~< B (3.1) 
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Then the following set has E-measure one: 

J - -  U {J:Vi, [i[~>N, [Ji.i+l]<.a(log([i[+2)) ~} (3.2) 

Proof. Let us observe that under our conditions, for any N~ N and 
aE N, we have 

E{ 3i, [i[/> N: [Ji. i+l [/> a(log( li[ + 2)) ~} 

<~ ~ E{lJi.~+~l>~a(log([i[+2)) ~} 
lil~>N 

= ~ E{exp(z IJi. i+~]t/~')>/exp[-al/~'log(li[ +2 ) ]}  
li[~>N 

<.,.Eexp(zlJi, i+tl 1/~') ~ exp[-zal#'log(]i[+2)] (3.3) 
[il~>N 

Hence we see that the rhs of (3.3) can be made arbitrarily small by 
choosing a such that a~/~z > 1 and N sufficiently large. Thus the union of 
complements of the sets considered on the lhs of (3.3) has E-measure 
one. 1 

Let us now choose a sequence of lengths {Dk~l~}k~Z+ by setting 
Do - 0 and 

D~=L>2 

Dk+l =Dk + [D~] (3.4) 

D_k = Dk 

with some constants L---L(J)  sufficiently large and ~ie(0, 1) sufficiently 
small to be chosen later; the symbol [x ]  denotes the biggest least integer 
of the real number x. For later purposes, let us note that by our definition 
we have 

D k + l - - D k =  [D~] ~< [D~+]]  ~<D~.+, (3.5) 

Using the just introduced sequence of scales, we define the following two 
families of intervals {A(,[)},,~ z, 1=0, l, by setting 

A',~' -- [D2,,+,+ 1, O2(,, + , ) + , -  1 ] (3.6) 

To proceed further, we will need to prove first a crude estimate, given in 
Lemma 3.3, on the growth of log-Sobolev coefficients for finite-volume 
Gibbs measures. In its proof we will use the log-Sobolev inequality for the 
free measure and the following simple fact. 
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Lemma 3.2 (Bar mass gap). For any A ~ ~ . w e  have 

a a 2 < (  cr - -  a m ' P A ( f - - P A f )  ~'I~A IV~fI2=PA E IV,fl 2 (3.7) 
I E A  

with a mass gap m -  re(J, A) satisfying 

m~>~l IAI-' e-4Supien IIUillu (3.8) 

In particular, for every J e 3 we have 

re(J, A~ t)) ~ 1 ~(O2(n + 1)+ / + 1) -z exp{ --4a(J)(log(D2,,, +~ )+t + 2))~} 

~ a(J)(D2(,,+ i)+l+ 1) -z" (3.9) 

with some positive constant ti(J) and any 6 '~ (6, 1). 

Proof. The proof uses simple "cutting-and-pasting" arguments 
(which can be applied in any dimensions). For A E~' ,  let {ik: k =  1 ..... IAI} 
be a natural ordering of its elements. (In higher dimensions one has to 
replace it by a suitably chosen lexicographic 0rder.) Now for any two con- 
figurations a, # ~ M  z we define an interpolating sequence  {o'(kl E MZ}k~z+ 
by declaring a (~ a and setting 

O" i if  j ~ ik_  l 
_(k)_ (3.10) 
vJ 6j if j1>i, 

With this notation we have 

a a 9 1 

t L d f  - l t  z f ) "  = ~ Ix" n | fi•(f(a) _ f(#))2 

=~ IalZ/t~|  2 ( f (a(k~-- f (a(*- l ) ) )  
k = I , . . . ,  IAI 

(3.11) 

where a, respectively #, denotes the integration variable with respect to the 
measure/~],  respectively p ] .  Hence by the H61der inequality we get 

a a 2 ~ 1  12A(f-- l tAf)  -~.~ IAI ~ I I~|  2 (3.12) 
k = I. . . . ,  IAI  

Now we note that 

I~,~ | fi"A(f(a ~*)) -- f ( a  (* -])))2 

<...2U"A| IV,,f(aI*))12 + 2l.t%| IV~,f(#Ik~)12 (3.13) 
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Removing the interaction at the point ik (or, if we are at higher dimensions, 
on the corresponding hyperplane containing this point) from each term on 
the rhs of (3.13), we "cut" the corresponding integrations and replaced 
them by integrations with suitable product measures. Next, inserting 
suitable interaction, we can "paste" the left piece coming from the one 
measure to the right piece coming from the other measure. By this 
argument we get the inequality 

p~A| IVj(aCk~)12 (3.14) 

Combining this with (3.10)-(3.13), we arrive to the mass gap inequality 
(3.7) with the spectral gap satisfying (3.8). Now the second part of the 
lemma easily follows by taking into the account Lemma 3.1, the definition 
of interaction, together with the definition of the intervals A I, t~ given before 
and the following simple inequality true whenever ~ �9 (0, 1 ): 

exp{4a(J)(log(Dz(n+l~+/+2)) ~} ~<a(J)(D2~,,+l~+t+ I) 6'-6 (3.15) 

with any 6' > 6 and some constant & dependent only on a(J) and the choice 
of 6'. II 

L e m m a  3.3 (Bar  log-Sobolev coefficients).  For any A �9 ~ we have 

/~Af 2 log f~< C/~ IV,~fl 2 + / ~ f 2  log(/~ f2),/2 (3.16) 

with a log-Sobolev coefficient c - c(J, A) satisfying 

c<~cl IAl2e t~ s"p~'~ IIv~"" (3.17) 

for some positive numerical constant c~. In particular for every J e~  we 
have 

c(J, A',{ )) ~< ?(Dz,,, + ,~+t+ 1)+26 exp{ + 6a(J)(log(O2~,, + ~)+t + 2)) ~ } 

<~ Co(J)(D2In+ 1 ] +/'[- 1 ) +6' (3.18) 

with some positive constants ? and co dependent on J, and any 6' �9 (26, 1 ). 

Proof.  Applying the logarithmic Sobolev inequality for the free 
measure/~o with the function 

( d/t ~,r,,']'/2 

d/lois, / f 

it is not very difficult to see that the following inequality is true: 

/ l ~ f  z log f~< Cl e 4 maxi~" IIUill"//~ I V A f l  z 

+ C2 IAI e 6 maxje" IIUil[u]-/~ Ifl 2 +HAfz  log(H~fz),/z (3.19) 
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Using this, by standard arguments c2~ one gets a logarithmic Sobolev 
inequality for the measure/C~ with corresponding coefficient c satisfying 

c = Cie  4 m~xi'a "viii" + 1 C 2 IAI e 6 maxima llUill" 
m 

~< max(C|, C2) e6 maxj~" II uJ 11" ( ~ - [  "}- 1 ) (3.20) 

with m denoting the corresponding mass gap. Hence, applying Lemma 3.2, 
we obtain (3.17). The inequality (3.18) in the case when J ~ ~ follows from 
Lemma 3.1, the definition of the sets A~,/~, and inequality (3.15). I 

We will need another  simple fact, namely the following cluster 
property of conditional measures. 

k e m m a  3.4.  For  any J �9 $ there is L(J )  such that for any n �9 7/and 
i=O,  1 we have 

[,u.~,,(V i U~T) - pA.y(Vi UA,,,) ] <~ exp{ - / ~ ( D 2 n  +i + 1) a/4 } (3.21) sup 
Z\A n Z\A n 

where 
~ A ( i + m o d 2 t l  Ati+mod2 I)} 
, _ , , _ ,  

Proof. To prove (3.21), we note that, for any j �9 E_\A~,~ ~, d(j, "~ A,, )~< 1, 
and for any two configurations a and ~ coinciding outside a set A~ t~, we 
have 

# 

o. . -p~,,(WjU~,,,)I. " -- * VIVA"' dp~,,}]~ (3.22) 

with VjUAT localized close to the boundary of A(,[ ) and dla~&l)/dp~t, 
localized far from the boundary. Then it is not very hard to see that the 
following estimate is true if j is on the left of AI,[ ~ (other cases being 
similar): 

,-n 
(3.22) ~< IIVi UA,.I, II,. [I 1-[ th(2 [I U~I[,,) (3.23) 

d/tA~" [I-i~ A,i.,,.,~ 

where we have set 

A(j, n, l) = [ j  + l, [(D2,,,+ , ,+ t - -  D2 , ,+ , -  2)/2]3 

Fixing attention on the case n >_-0 (the other cases being similar), and 
taking J �9 ~, we get 

th(2 II Uilt.) ~< 1 - e x p {  -2a(J)(log(i-D2,,+,)) ~} (3.24) 
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Since for any d" ~(0, 1) we have 

exp{-2a ( J ) ( log ( i -  D2,+t)) ~} >~bt(J)(i-D2,,+l) -'~" (3.25) 

with some positive constant b,(J), we get the following estimate: 

1 -- r I-[ th(2 ii Ui ii,,) ~< exp { _ b2(D2(n +l-a,.],+t --D2n+t)} (3.26) 
i + , 4 ( j ,  n . / )  

with some positive constant b2 = b_,(J). Choosing 6" e (0, �88 and using our 
assumption about the interaction to estimate the first two factors on the 
rhs of (3.23), we obtain 

lp~,)(Vi U,,) ) a ~<exp{ --h~t(D2,,+t + 1) 'v4} "~ -'~ -p~d,(VjUA,d,)[ (3.27) 

with some positive constant .~t = ~ ( j ) .  This ends the proof of the lemma. II 

Using the above proven lemmas, we will show the following main 
result of this section. 

T h e o r e m  3.5. Suppose the distribution E satisfies the exponential 
bound (3.1) with some a e (0, 1). Then there is y e (0, 1) such that for every 
A e ~ ,  a e M  z, and J e~ the corresponding conditional measure p~ 
satisfies the following logarithmic Sobolev inequality with local coefficients: 

fl.~f2 log Ifl ~< ~ c~p, IV~fl 2 , 2 +PAf log(Ft~ f 2)1/2 (LLS) 
l e a  

where c l - c i ( J ) e ( 0 ,  or) satisfies (with E-probability one) the sublinear 
growth condition 

c, ~< C(J){ I + d(0, i)} r (3.28) 

with some positive random variable C(J). 

Remark. Let us note that (LLS) implies a similar inequality with 
P(--~x+i(f)f)  replacing p IVj [  a and new coefficients ~:i-~i(X,J) 
satisfying also a sublinear growth condition. 

Proof. First of all it is easy to see that the product measures 

dJkf(a)=-- Q p~,),oj:).f, kef~, k~,od2=kmod2 (3.29) 
n e Z  

satisfies the following log-Sobolev inequality with local coefficients: 

._@~.f2 log f~< ~ ~(k,co ~ . f 2  ,~j ~,t. IVjfl 2 + log(.~.fz) tn (3.30) 
j a ~ '  
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where e~ *~, k e ~, satisfies 

f0  A,  -)  if j f o r somen~2Z O"~(k)~< ( j ,  (kood,) eA(,k~od:~ 
"~ "i otherwise (3.31 ) 

One can easily see that, as follows from Lemma 3.3, the local coef- 
ficients {el kl} satisfy the sublinear growth condition (3.28) for any 
ye(O, 1). 

For a nonnegative function f let us define the following sequence of 
functions: 

{f~k if k = 0  
fk-- �9 �9 �9 dOPl f 2 ) 1 / 2  for k e l ~  (3.32) 

Since for every k e t~, @ is a regular conditional expectation associated to 
the unique infinite-volume Gibbs measure/.t j ,  we have 

/.taft._ i log fk_  l =/ . ta .~,f2_ 1 log fk_  l 

~< ~ ~(k). 2 ~ ~ a l V J k - , I  +IZaf21ogfk (3.33) 
i e Z  

Summing the inequalities (3.33) over k = 1 ..... N, we obtain 

N 

/xaf21ogf~< ~ ~ /~a(el k) IVJ,_,12)+~a(fNlOgfN) (3.34) 
k = l  Je:•  

Let us mention that for k ~> 2 the corresponding function fk-I is localized 
in the set (of length 2R) 

A,-'*) =- A~n km~-" I ~ { --,,-#k + .~ : ,  , l  W A ~ + '~:  "} (3.35) 

Therefore the corresponding local coefficients col k} are determined by the 
corresponding log-Sobolev coefficients of the relativizations of the me"sures 

respectively. Using this remark, it is easy to see that for k > 1 we need to 
take 

e,k) _ {~Xp { 2 II U(/i~o*'~ 2)) II, if j e A:,*~~ for some n ~ Z 
(3.36) 

i otherwise 

Let us note that due to Lemma 3.1, the nonzero terms on the right-hand 
side of (3.36) satisfy the mild sublinear growth condition [of  the form 
(3.28) with y > 0  arbitrarily close to zero]. 
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Remark. Let us note at this point that in the case considered in 
ref. 12 the corresponding coefficients are bounded by a constant independent 
of the size of the intervals A, (which can be seen, e.g., by using Lemma 5.1 
of ref. 5) and therefore Lemma 1.1 is superfluous there. 

Now we use analogous arguments as in the proof of Lemmas 1.2 and 
1.3 of ref. 12, but now taking into the account our choice (3.4) of the inter- 
vals At, t~ with sufficiently large L - - L ( J )  which allows us to apply Lemmas 
3.1-3.4. By this we obtain the following bound for k >/2: 

Pa(cl k~ [V,fk_,l")~<2 k- '  ~ /zs(cl'~(1 +Co2- ' ) IV i f l  2) (3.37) 

with some constant 2 e (0, 1) and Co ~ (0, oo) independent of J [provided 
L(J)  is chosen sufficiently large]. By similar arguments as in ref. 12 it is not 
difficult to see that in our situation we have also 

lim f u = p a f  (3.38) 
N ~ o c  

for any nonnegative local function f .  Combining (3.34) with (3.37) and 
(3.38), we conclude that LLS is true with the local coefficients satisfying 
the mild sublinear growth condition (3.28). This ends the proof of 
Theorem 3.5. II 

Let us remark that clearly also (with probability one) the infinite- 
volume Gibbs measures Pa satisfy the logarithmic Sobolev inequality with 
corresponding local coefficients satisfying the sublinear growth condition. 

4. DECAY TO EQUIL IBRIUM 

First of all we observe that using the finite speed of propagation 
property ( . )  and the known property of approximation of the infinite- 
volume Gibbs measure and assuming that the function f of intere~: to us 
is localized in a set A but far from its boundary, we have 

I P , f ( a ) - P a f l  <~ I P , f ( a ) -  P,A" of(a)l + IP, A' ~  + I P ~ f - # a f [  

IP,~" ~f(a) - P , ~ f l  + B(J, f ) e  -a'  (4.1) 

for some constant A E(0, oo) provided d(f ,  aA)~> Ct with some positive 
constant C; the constant B(J, f ) ~ ( 0 ,  oo) is independent of A, a, and t. 
Next we observe that for any q ~ [2, oo) we have 

IPA, �9 " f (a)  - P ~ f l  = {leA," " f (a)  - p ~ f [  q} l/q 

<~e211uall"/q{It~ I P ~ ' O f ( . ) - p % f l q }  l/q (4.2) 
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where in the last step we have used that the probability of every configu- 
ration inside A measured with the measure /~A is not smaller than 
e x p ( - 2  I[ Ua I[u). (Let us note that for continuous spins similar arguments 
work at the cost of decreasing the time by one.) By our estimates of 
Section 3, we get the following hypercontractivity estimate: 

{IUA [PAt '"f( ' )--I tAflq} '/q <~ {tZ~ IPff;V( .)--Iz%flZ} ~/z (4.3) 

for any q satisfying 

with any 0e(0 ,  1) and 

2 ~< q ~< q(t) --- 1 + e II -o),/cA (4.4) 

c A = m a x  ci ~ c(J) [AI ~' (4.5) 
i~A 

by general for any y e(O, 1). Using this together with the fact that 
arguments (see, e.g., ref. 2) (4.5) implies a spectral gap 

1 
g a p 2 ( - - - ~ )  > / -  (4.6) 

CA 

we arrive at the following bound: 

{l~] ]PA,'~f(" )-- la~f[q} '/q <~ e--O'/cA(12~ ] f  - -kt] f[2)  '/z (4.7) 

Since we need to take [ A I = [ C t ]  [ to have (4.1)], the estimate (4.5) 
together with (4.7) and some simple arguments give us 

{ it~A [pA.~f( . ) _ l ja f lq}  1/q --.< Da(d, 0) e -'~ [[Ifll[ (4.8) 

with some constants Da(J, 0)~ (0, oo) and any 6 < 1 -  y. Using this, the 
bounds (4.1)-(4.2), and observing that with probability one 

]IUA []. , 0  (4.9) 
q(t) ' ~  

we finally arrive at the desired estimate 

IP, f (a)  - I x a f l  <~ Ca(J, f ) e - ' 6  (4.10) 

with some constant Ca(J, f )  E (0, oo) and 3 < 1 - y. This ends the proof of 
Theorem 1.2. 1 
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